These are management system documents utilized by ATF Laboratories. They are provided for informational purposes only. Sensitive or copyrighted information has been redacted. The documents are used in ATF Laboratories and not published with the intent of setting a policy or analysis standard for other laboratories. The inclusion of product names does not imply endorsement by ATF Laboratories.

These documents are current as of March 21, 2022. ATF management system documents are reviewed annually and revised as needed. For specific requests, submit a Freedom of Information Act (FOIA) request. Instructions on how to file a FOIA request are found at: www.atf.gov/resource-center/freedom-information-act-foia.

INDEX

ATF-LS-FT Introduction
ATF-LS-FT1 Examination of Firearms
ATF-LS-FT3 Examination and Comparison of Unfired and Fired Ammunition and Components
ATF-LS-FT4 Serial Number Restoration
ATF-LS-FT6 Examination of Toolmarks
ATF-LS-FT7 Fracture Examinations
ATF-LS-FT8 Firearm Safety Guidelines
ATF-LS-FT9 Firearm and Toolmark Examination and Documentation
ATF-LS-FT10 Photo Documentation of Comparative Examinations
ATF-LS-FT11 Theory of Identification and Range of Conclusions
ATF-LS-FT12 Trace Evidence Preservation and Collection
ATF-LS-FT13 Standard Ammunition File
ATF-LS-FT14 Maintenance and Calibration of Microscopes and Other Measuring Devices
 ATF-LS-FT14-W-A Maintenance and Calibration of Microscopes and other Measuring Devices
 ATF-LS-FT14-W-W Maintenance and Calibration of Microscopes and other Measuring Devices
ATF-LS-FT15 Report Wording
ATF-LS-FT17 Verification
The ATF Laboratories Management System includes technical operational guidelines for each discipline area. These guidelines were established by ATF laboratory employees, specific to each discipline. The format for methods of analysis, as well as guidelines for developing and maintaining the documents are laid out in ATF-LS-Quality Manual. These methods of analysis are to be the standard for all ATF Firearm and Toolmark Examiners. As with most scientific methods, allowance for variation from the prescribed method is sometimes necessary. Variation from any of these methods will be clearly documented in the case jacket. Case documentation and case file peer review guidelines are explained in the ATF-LS-Quality Manual.

ATF Firearm and Toolmark Examiners encounter a broad spectrum of casework in varying and unusual evidence types, which typically fall within one of the following areas.

- Firearms – test firing and comparison
- Toolmarks – classification, characterization and comparison
- Serial number restoration/restoration of obliterated markings
- Shooting reconstruction – trajectory analysis

The methods of analysis described in the ATF-LS-Quality Manual documents provide minimum requirements and guidance for both performing and documenting casework in these areas.
1. **Scope**

 1.1. This guideline sets forth the procedures for examining firearms and documenting relevant information. This protocol is applicable to all ATF Firearm and Toolmark Examiners.

2. **References**

 AFTE Glossary, Current Edition
 AFTE Journal
 ATF-LS Quality Manual
 ATF Reference libraries

3. **Safety precautions**

 3.1. Basic safety rules:

 - Handle all firearms as if they are loaded, and check to see if they are.
 - Always point the firearm in a safe direction.
 - Keep your finger off of the trigger until you have made the decision to shoot.
 - Always be certain of the target and the surrounding area.
 - Thoroughly read the manufacturer's instruction manual for the firearm, when it is available.
 - Check the firearm to be sure that it is operating properly and is free of obstructions.
 - Take into consideration the proper ammunition and caliber for the gun recommended by the manufacturer.
 - Consider if the firearm has been re-chambered for a different cartridge.
 - Always wear eye and ear protection.
 - Never use a firearm under the influence of drugs or alcohol.
 - Do not rely on mechanical safeties.
 - Do not alter or modify the firearm, unless case reconstruction makes it necessary.
 - Always unload firearms when not in use.
 - All firearms should be stored unloaded and secured in a safe storage location.
 - Always transport a firearm unloaded, separate from the ammunition.

4. **Apparatus/reagents**

 4.1. Stereo microscope, comparison microscope, trigger pull gauge, calipers, rulers, non-marring dowel, bore light, bore scope, hand tools, gunsmith tools.
5. Procedures

5.1. Record general information on firearm.

5.2. Record condition of firearm.

5.3. Preliminary examination for operability (i.e. - having the mechanical ability to discharge a projectile (e.g. - bullet or shot).

5.4. If not operable, describe malfunction and anything done to remediate the issue(s).

5.5. If necessary for the examination, and if the firearm is operable, test fire in accordance with test fire guidelines and safety manual.

5.5.1. Test fire guidelines:

5.5.1.1. The basic philosophy in test firing is that the examiner should attempt to obtain pristine specimens for the purposes as needed to perform the necessary examination for which the firearm was submitted to the extent feasible in a controlled laboratory environment.

5.5.1.2. The examiner should evaluate the desirability of examining the inner surface of the barrel, chamber(s), and breech area prior to test firing and the need for retaining any residue that was present.

5.5.1.3. Test fired components may be indexed for orientation and marked to record the sequence of firing. Notes may be made as to which chamber each cartridge was fired in as well as the action mode used for each test, when appropriate.

5.5.1.4. A minimum of two test cartridges will be fired in such a manner that the test components will be useable for examination. It may also be necessary to fire additional cartridges.

5.5.1.5. The examiner should be aware of the potential danger in firing downloaded ammunition as well as the possible change(s) in toolmarks on those components due to a reduction in pressure.

5.5.1.6. Test fired components are permanently marked for identification purposes and returned to the submitter along with the rest of the evidence. At the discretion of the examiner, extra test fired components may be made and retained in the laboratory for use in a reference collection.
5.5.2. Test firing safety:

5.5.2.1. Prior to test firing a firearm, it must be inspected to ensure that it operates safely.

5.5.2.2. Examine the firearm prior to loading for any cartridge/caliber modifications.

5.5.2.3. If there is a reason to doubt the safety of a firearm or the ammunition used in it, it should be test fired remotely.

5.5.2.4. Any problems or doubts concerning the safe handling or testing of a firearm should be brought to the attention of an experienced firearms examiner.

5.5.2.5. Employees must familiarize themselves with the operational characteristics of the firearm to be tested and the ammunition to be used before any test firing. Individuals in the immediate area of the test firing are to be notified that the test firing is going to occur.

5.5.2.6. The test firing of firearms must be performed with the examiner and any assistants wearing safety glasses and ear protection.

5.5.2.7. A visual inspection of the interior of the barrel will be made before shooting, and between shots if circumstances make this necessary.

5.5.2.8. The firearm will only be loaded in the test firing area, just prior to firing.

5.5.2.9. No test firing will be done without a second examiner or assistant present, either in the room, or in immediate area. An exception to this allows for FSL-W Firearms Section staff to monitor IBIS Section personnel in the water tank test firing room via the closed circuit camera/monitor system.

5.5.2.10. Rifle cartridges may be downloaded for firing, with cotton or similar material packed in the cartridge to hold the powder near the base. It is essential when firing downloaded cartridges to make sure that each fired bullet clears the barrel.

5.5.2.11. A firearm examiner may determine that a gun is unsafe to fire, even remotely.

5.6. Snail trap shooting rules

5.6.1. No unauthorized firing of any weapons will be permitted.
5.6.2. Ensure that the pump intake is fully submerged in the liquid. When the pump is plugged in and running, fluid must be spilling from the bottom of the trap into the small basket of the holding tank. Test firing will not be done into a dry trap.

5.6.3. The barrel of the firearm must be pointed into the firing tube before any action is closed on a live cartridge. In the case of revolvers, the cylinder may be closed before, but closed in such a way as to ensure that a live cartridge does not come into a battery position.

5.6.4. Unless it is necessary to fire a number of cartridges one right after the other, only one live cartridge is to be loaded for firing at one time.

5.6.5. When firing, the barrel should be as close to level as possible in relation to the firing tube.

5.6.6. The barrel of the firearm must remain in the firing tube until it is confirmed that the firearm is empty and safe.

5.6.7. After firing, unplug the pump and check the fluid level.

5.7. Bullet recovery tank (BRT) safety rules

5.7.1. All weapons that are to be fired into the BRT will be inspected for obstructions of the bore, cylinder and/or chamber and given a general safety check prior to being fired into the BRT.

5.7.2. Personnel firing weapons will ensure that someone is either present in the firearms examination or office area or that someone outside of this area is aware that someone will be test firing weapons and that no one else is present in the vicinity of the BRT. Personnel firing weapons shall ask someone outside of the BRT room to check periodically to ensure that the shooter is safe.

5.7.3. Eye and ear protection will be worn by shooters, and by all observers in the room. Observers will remain in back of the shooter, until such time as the shooter indicates that it is safe to go in front of or along side of the BRT.

5.7.4. Prior to firing into the BRT, the shooter will:
 - Check the tank for other projectiles;
 - Ensure that the water level is at the proper level;
 - Ensure that the air filter/evacuation system is turned on;
 - Ensure that the lid is in a full down position;
• Ensure that the door to the shooting area is shut;
• Ensure that all observers are in a safe position and are wearing proper safety equipment.

5.7.5. Weapons should be made ready to fire (i.e., cartridge chambered) only when the muzzle of the weapon is placed into the firing tube of the BRT, with the muzzle pointed towards the water. In the case of revolvers, the cylinder may be closed prior to insertion into the firing tube as long as a cartridge does not come into battery position when first closed.

5.7.6. Do not fire any weapons in full-automatic mode.

5.7.7. Do not fire any armor piercing ammunition into the tank.

5.7.8. If a misfire occurs, keep the weapon’s muzzle pointed into the BRT for at least 15 seconds before attempting to clear the weapon. Keep the muzzle pointed into the firing tube while clearing the weapon. Recheck the weapon's bore, cylinder, chamber etc for obstructions prior to attempting to re-fire the weapon.

5.7.9. Each shooter shall ensure that the area is cleaned up after firing. This includes the picking up of fired casings, removal of metal debris from the tank bottom and wiping up any water which may be on the tank, catwalk or floor.

5.7.10. Cleaning of the tank’s floor will be conducted on an as needed basis.

5.7.11. Air filters and water filtration systems will be cleaned and/or replaced as needed.

5.7.12. Ensure that the water in the BRT has some water conditioner present.

5.7.13. The floor under the tank and adjacent walls should be inspected for signs of wear, stress or fracture at least every year.

5.7.14. No smoking, eating or drinking is allowed in the BRT room.

5.7.15. Wash hands thoroughly after firing weapons.

5.8. Safety rules for firearms ranges

5.8.1. While being transported to a range, firearms will be unloaded and secured separate from the ammunition.

5.8.2. Prior to entering the range, the firearm will be checked to ensure the barrel is clear of
obstructions.

5.8.3. All firearms will remain secured until the area of the firing line is entered.

5.8.4. All firearms will be pointed down range at all times when they are out of a case or holster.

5.8.5. All firearms shall have the action open or be secured in a case or holster when not on the firing line.

5.8.6. Firearms will not be removed from a case or holster until the shooter has taken a position on the firing line.

5.8.7. Firearms will never be dry-fired or handled behind the firing line.

5.8.9. Firearms shall always be treated as if they are loaded, and there is no difference in the techniques used to handle an empty or loaded firearm.

5.8.10. Shooters will personally examine every firearm handed to them to make sure they are unloaded.

5.8.11. A shooter will keep their finger off of the trigger and out of the trigger guard until they are ready to fire.

5.8.12. On the command of "cease fire", all shooters will stop firing.

5.8.13. If the firearm fails to fire a live round after the trigger is pulled, or if a "squib load" is heard, the shooter will keep the barrel pointed down range until the firearm is checked and made safe.

5.8.14. Shooters on the firing line will not turn around from the firing position with the firearm in hand.

5.8.15. Shooters shall not depend entirely on the mechanism of any firearm.

5.8.16. Shooters will never leave the firing line with live ammunition in a firearm.

5.8.17. The shooter must know:
 - How the firearm works.
 - Is the firearm loaded?
• Where is the firearm pointed?
• Where is the target?
• What is the target?
• Where will the bullet go if the target is missed?

5.8.18. Wash hands thoroughly after firing weapons. Use soap and water if available. If these are not available, use several prepackaged moist towelettes.

5.9. Dry firing

5.9.1. Dry firing is defined as release of the hammer or striker on an empty chamber, in a manner consistent with the normal operation of the firearm. It is recognized that there are situations in which dry firing a firearm will be necessary. Examples include trigger pull tests; checking indexing; checking timing; checking mechanism; and pre-firing check.

5.9.2. Firearms should only be dry fired if necessary for the case examination, due to the possibility of damage to the mechanism or chamber of the firearm.

5.9.3. Prior to firing, the examiner shall verify that the chamber of the firearm is empty, or loaded with a "dummy" cartridge.

5.9.4. If the examiner determines that it is necessary, the snail trap or bullet recovery tank may be used as a safety precaution.

6. Quality Assurance

6.1. Error is avoided when equipment is maintained in good repair and regularly checked for calibration.
1. Scope

1.1. The examination of unfired and fired ammunition components serves multiple purposes. First, in the absence of a firearm, a potential source of fired ammunition components can be compiled by identifying the class characteristics of those components and comparing those with reference literature, databases and collections. Second, is to compare like ammunition components, including possible test fired ammunition components from a known firearm, to determine whether the ammunition components share a common firearm source. Last, examination of ammunition components in order to identify potential reloading marks and the possible manufacturer/marketer of the components. This protocol is applicable to all ATF Firearm and Toolmark Examiners.

2. References

AFTE General Rifling Characteristics database (GRC)

AFTE Glossary

AFTE Journals

ATF Laboratory Services Standard Ammunition File (SAF).

ATF-LS Quality Manual

ATF Reference libraries

3. Apparatus/reagents

3.1. Balance, scale, micrometer, calipers, ruler, stereomicroscope, and comparison microscope.

4. Procedures

4.1. The condition as well as type of fired ammunition components varies sufficiently that each should be considered on its own merit. In general, the following guidelines apply.

4.1.1. Mark fired ammunition component with identifying marks (if possible and appropriate) in a non-critical location.

4.1.2. Record the relevant class characteristics observed on the fired ammunition component(s) and determine if the marks are suitable for comparison.
4.1.3. If a firearm is submitted, determine if the marks produced by the firearm are suitable for comparison.

4.1.4. If trace of potential evidentiary value is observed, follow appropriate laboratory guidelines for collection and preservation.

4.2. To compare fired ammunition components, including test fired components that have been generated as a result of a firearm examination:

4.2.1. Ensure class characteristics are in sufficient agreement to continue forward.

4.2.2. Mount the two specimens on separate stages of the comparison microscope.

4.2.3. Verify compatible magnification.

4.2.4. Determine a starting point for the area of interest to be compared.

4.2.5. Document observations - evaluate for the potential of subclass characteristics on the relevant toolworking surfaces (TWS).

4.2.6. Determine conclusions - If an identification was achieved with a particular test fire component, that test fire component is to be marked in a manner that will distinguished it from other like ammunition components. Document the manner in which this marking was done in case record.

4.2.6.1. If a bullet is excluded from a submitted firearm(s) or no firearm is submitted, provide a list of possible firearms from which an ammunition component(s) may have been fired. Compare the class characteristics of the ammunition component(s) with those found in reference literature and databases.

4.2.6.2. Measure all suitable land and groove impressions.

4.2.6.3. Record measurements.

4.2.6.3.1. At a minimum, examiners must record the minimum and maximum land and groove impression measurements.

4.2.6.4. Using the AFTE GRC database, input the minimum and maximum measurements along with a variance of 0.003".
4.2.6.4.1. Examiners have discretion as to the amount of variance used, but must justify the reason in the case record.

4.2.6.5. Document a list of possible firearms and retain the AFTE report in the case record.

4.2.6.6. Generally, a list of no more than (7) firearms need to be provided in a report.

4.3. When applicable:

4.3.1. Examine the ammunition and ammunition components for manufacturer markings, indications of possible reloading, class characteristics and physical features of the ammunition components to compare with available literature and reference collections.

4.3.2. Look for evidence of reloading. Intact cartridges with marks such as resizing, bullet seating, primer seating, and firearm toolmarks should be considered as possible reloaded ammunition.

5. Quality Control

5.3.1. Reliable results are ensured when the proper significance is attached to the correspondence of individual marks being observed and equipment used is properly calibrated and maintained.
1. **Scope**

1.1. These guidelines establish a standard approach to restoring obliterated serial numbers and other obliterated markings. This method of analysis is applicable in all ATF Firearm and Toolmark Examiners.

2. **References**

 AFTE Journals

 ATF-LS-Quality Manual

 ATF Reference libraries

 Methods for the Restoration of Obliterated Serial Numbers (Treptow)

3. **Safety precautions**

3.1. PPE should be worn when working with acids and bases. Be aware of the location and usage of acid spill kit, fume hood and all other safety equipment.

4. **Apparatus/reagents**

4.1. Magnetic metals

4.1.1. Various etching reagents, prepared iron particle bath, clear coating magnetic yoke, magnifying lamp, and magnets.

4.2. Non-magnetic metals

4.2.1. Various etching reagents, clear coating, cotton swabs, magnifying lamp, stereo microscope, camera, power source, assorted bottles and beakers.

5. **Procedure**

5.1. Mark firearm in such a way as to allow for any future recognition or identification.

5.2. Photograph the suspected obliterated serial number area.

5.3. Conduct a visual and/or microscopic examination of the obliterated area and record any observations.
5.4. If trace of potential evidentiary value is observed, follow appropriate laboratory guidelines for collection and preservation.

5.5. If preliminary examination reveals the presence of toolmarks suitable for comparison, casts should be taken, packaged appropriately and returned with the evidence. Determine whether the surface to be processed is magnetic or non-magnetic. Preparation and restoration techniques, as well as the order in which they are performed, will vary according to metal, specifically magnetic or non-magnetic, type, and severity of obliteration.

5.6. If necessary, conduct a literature review on the firearm.

5.7. Surface preparation of the obliterated area should be conducted to maximize the effectiveness of the restoration technique. However, it may not always be necessary if the obliterated area appears smooth.

5.8. Begin restoration processing utilizing any of the below techniques as described in Treptow (1978) reference:
 - Magnetic particle method
 - Chemical etching
 - Electrolytic

5.9. Document the results.

6. Quality Assurance

6.1. Chemical etchant reagents should be prepared in accordance with the reference literature formulations. Records identifying who made the reagent and the date of preparation shall be maintained.

6.2. Initial testing of a reagent(s), prior to casework, requires that one of the following be observed when testing the reagent on an appropriate control: chemical reaction in the form of gas liberation, bubbling or a color change in the metal (Other reactions might be possible). The results of reliability testing shall be recorded.

6.3. Continued reliability testing of reagents can occur through use in casework. Should it be determined that a reagent is not reacting reliably or as expected (as described above), the reagent will be discarded immediately and a fresh reagent will be prepared and tested as indicated above. The use of an expired reagent is not detrimental to a test result, so a new reagent(s) may be subsequently utilized in the same location.

6.4. Reagents may be used indefinitely as long as their continued reliability is monitored.
during casework.
1. Scope

1.1. These guidelines pertain to the examination of toolmarks and their comparison to test marks from suspect tools to determine the possible source. Examinations may include, but are not limited to, microscopic comparisons between toolmarks and/or test toolmarks from known sources. This protocol is applicable to all ATF Firearm and Toolmark Examiners.

2. References

AFTE Journals

ATF Laboratory Services Standard Ammunition File (SAF)

ATF-LS-Quality Manual

ATF Reference libraries

Department of Justice Uniform Language for Testimony and Reports for the Forensic Firearms/Toolmarks Discipline – Pattern Match Examination

3. Safety Precautions

4. Apparatus/Reagents

4.1. Various substrates for test tool marks, various measuring instruments, casting media and associated materials, stereomicroscope, and comparison microscope.

5. Procedures

5.2. The condition of the evidence as well as type of substrates on which toolmarks may be present varies sufficiently that each should be considered on its own merit. In general, the following guidelines apply.

5.2.1. Mark the evidence with identifying marks (if possible and appropriate) in a non-critical location.

5.2.2. Record the relevant class characteristics of the various toolmarks observed. In the
absence of a tool, the class characteristics may be able to provide a basis for the type and potentially the size of the tool that was responsible for making the toolmarks.

5.2.3. Determine if the marks produced by the tool are suitable for comparison.

5.2.4. If trace of potential evidentiary value is observed, follow appropriate laboratory guidelines for collection and observation.

5.2.5. If tools have been submitted, examine the class characteristics of the tools and if similar to examined toolmarks prepare suitable test marks in suitable substrate.

5.2.5.1 A minimum of two test toolmarks should be made to demonstrate reproducibility of the relevant tool working surface (TWS). It may be necessary to make additional tests or casts.

5.2.6. Evaluate submitted tools for potential of subclass characteristics and consider the potential for impact on comparison and conclusions.

5.3. To compare toolmarks, including toolmarks that have been generated as a result of preparing test marks:

5.3.1. Ensure class characteristics are in sufficient agreement to continue forward.

5.3.2. Mount the two specimens on separate stages of the comparison microscope. If the specimens are too large, then casts of the respective toolmarks/test marks may be prepared to facilitate examination.

5.3.3. Verify compatible magnification.

5.3.4. Determine a starting point for the area of interest to be compared.

5.3.5. Document observations; remember to evaluate for the potential of subclass characteristics.

5.3.6. Determine conclusions.

5.3.6.1. If a source identification (i.e. - identification) was achieved with a particular test mark, that test mark is to be marked in a manner that will distinguished it from other like test marks. Document the manner in which this marking was done in notes.
6. Quality Control

6.1. Reliable results are ensured when the proper significance is attached to the correspondence of individual marks being observed and equipment used is properly calibrated and maintained.
1. **Scope**

1.1. Through an examination and comparison of surface contours and internal fracture patterns, it is possible to determine whether two separate surfaces were once joined. These guidelines set forth the procedure by which portions of firearm components, tools, and other items of evidence can be examined to determine if the portions were once joined together. This protocol is applicable to all ATF Firearm and Toolmark Examiners.

2. **References**

 AFTE Journals

 ATF Laboratory Services Standard Ammunition File (SAF)

 ATF-LS-Quality Manual

 ATF Reference libraries

 Department of Justice Uniform Language for Testimony and Reports for the Forensic Firearms/Toolmarks Discipline – Fracture Examinations

3. **Safety precautions**

3.1. PPE should be worn when working with sharp or jagged objects.

4. **Apparatus/reagents**

4.1. Stereo and comparison microscope(s), micrometers, calipers, rulers, casting media, and photographic equipment.

5. **Procedure**

5.1. See ATF-LS-Quality Manual for minimum required documentation and supplemental documentation depending on the purpose for which the firearm was submitted for examination.

5.2. The wide variety of items that could be submitted for a physical fit comparison varies sufficiently that each should be considered on its own merit.

5.3. In general, the following guidelines apply.

 5.3.1. Record physical properties of item(s) to be compared, such as, but not limited to,
5.3.2. Determine and record type of separation, e.g., shear, cracked, and torn.

5.3.3. Determine and record that class characteristics of items are compatible.

5.3.4. Evaluate shape of separation and check for any surface features that may be continuous on both sides of the separation.

5.3.5. If all the class characteristics agree, compare all fractured surface visually and/or microscopically to determine if they were once joined.

5.3.6. If the item is of suitable thickness and composition, compare the internal fracture pattern(s) microscopically (using direct or reverse lighting) to determine if they were once joined.

6. Range of conclusions

6.1. The examiner may offer any of the following conclusions.
 • Fracture fit
 • Exclusion (i.e. - excluded)
 • Inconclusive

7. Quality control

7.1. Reliable results are ensured when equipment is properly calibrated and maintained and the examiner appropriately assesses the significance of the various characteristics being observed.
1. Scope

1.1. This policy sets forth safety guidelines for the operation and shooting of firearms.

2. References

 AFTE Journals

 ATF Laboratory Services Standard Ammunition File (SAF).

 ATF-LS-Quality Manual

 ATF Reference libraries

3. Safety precautions

3.1. PPE should be worn when test firing firearms.

4. Apparatus/reagents

4.1. Snail trap, bullet recovery tank

5. Procedure

5.1. Listed below are some general firearm safety procedures for the initial receipt and pre-firing examination of a firearm.

5.1.1. Ensure that firearm is not loaded.

5.1.2. Check the mechanical integrity of firearm components. Specifically, check the barrel for obstructions, cracks, bulging or warping.

5.1.3. Determine if firearm contains original components and/or if it has been modified for full-automatic fire.

5.1.4. Check the operability of firearm prior to test firing.

5.1.5. Ensure the water level of the tank or snail trap are correct for test firing.

5.2. Listed below are the basic firing safety procedures for the actual shooting component.

5.2.1. Handle and treat all firearms as if they were loaded.
5.2.2. Always point a firearm barrel in a safe direction, preferably down range, with finger off the trigger.

5.2.3. Never use a firearm under the influence of any substance that may alter alertness or a medical condition that negatively affects your ability to manipulate a firearm.

5.2.4. If you are not familiar with the firearm, ask for advice or assistance.

5.2.5. When not firing or in transit, keep firearm muzzle pointed in a safe direction, unloaded with magazine removed and, preferably, in the out-of-battery position.

5.2.6. Always wear ear and eye protection when firing. Additional protective equipment, such as vests and full masks, are available if desired or needed.

5.2.7. Keep firearm and ammunition at or near the shooting position and/or in immediate vicinity of the shooter rather than at distant work tables.

5.2.8. Load one cartridge at a time while at the shooting position and ensure that projectile clears the bore after each firing unless examination dictates otherwise.

5.2.9. No shooting unless someone else is present in the firing room or Firearm Section.

5.2.10. Spotters and other observers should always be behind and, preferably, to one side of the shooter when at a shooting position.

5.2.11. Announce to others in the section prior to shooting.

5.2.12. Before firing, announce that you are in the shooting or ready to fire position, then allow several seconds for others to put their ear and eye protection in place. Obey any shooting commands.

5.2.13. Fire toward the bullet trap: vary orientation of target, not firearm.

5.2.14. Empty firearm of ammunition with muzzle pointed downrange, and announce firearm cleared before leaving shooting line.

5.2.15. In case of misfire, keep firearm pointed downrange or in firing port for reasonable amount of time before attempting to unload and return firearm to the out-of-battery and/or safe condition position.

5.2.16. When measuring distances, keep hands behind the muzzle at all times.
5.2.17. All shooting participants should be briefed on safety rules and know the locations of first aid kits.
1. Scope

1.1. This policy and procedure guideline sets a minimum standard for examination documentation in firearm and tool mark casework. It also describes additional information, which should be included in case note documentation if applicable. This policy is applicable to all ATF Firearm and Toolmark Examiners and relates to documentation of casework of all types of examinations.

2. References

AFTE Glossary, Current Edition

AFTE Journal

ATF-LS Quality Manual

ATF Reference libraries

3. Documentation requirements

3.1. Prior to performing any comparisons between an unknown and a known item, class, individual, and/or any other discernable characteristics of the unknown item will be analyzed and evaluated for comparison purposes. The determination of value for comparison will be at the discretion of the examiner.

3.2. Case notes must contain comprehensive detailed observations. For a firearm and toolmark examination, this can require a variety of documentation that is specific to the type of examination. These guidelines define the variety of documentation that is required and optional for various firearms evidence to support the conclusion(s) that must be stated in the notes by the examiner.

3.3. Worksheets are a good tool for aiding the examiner in data collection and recording observations and measurements. At the discretion of the Section Chief, examiner developed worksheets may be used to record data and observations. These personally created worksheets are not controlled documents.

4. Minimum documentation

4.1. Firearm examinations

4.1.1. The examination of the firearm can require additional information, including submission to Firearms Technology Criminal Branch (FTCB) or Firearms and
Ammunition Technology Division (FATD).

4.1.2. The following minimum information will be included in case note documentation.

- Packaging
- Exhibit number
- Firearm type
- Make
- Model
- Caliber
- Generic action type
- Serial number
- Finish
- Magazine submission (yes/no)
- Examiner ID marks/location
- Number of lands and grooves and direction of twist

4.1.3. Depending on the scope of the examination, recording of additional information as described below may be necessary.

- Magazine (type)/cylinder capacity
- Safeties: type and operational condition
- Position of the safeties (on or off)
- Type and amount of ammunition submitted with firearm
- Land/groove measurements
- Examination of the tool working surfaces for individuality (subclass characteristics) i.e., barrel, firing, breechface etc.
- Test fire information (SA/DA/number of testfires/ammunition used)
- Trigger pull measurement (method used/SA/DA)
- Trace evidence examination
- Comparison documented
- Support for conclusion
- Residues in bore
- Overall condition of the weapon, noting any obvious damage
- Importer (if present)
- Grip configuration/condition
- Overall length
- Photographs/photomicrographs
- Direction of cylinder rotation
- Position of extractor/ejector
- Shape of firing pin impressions
- Cartridge interchangeability
4.2. Ammunition examinations

4.2.1. The following minimum information will be included in case note documentation.
- Packaging
- Exhibit number
- Headstamp
- Caliber
- Bullet type
- Examiner ID mark (location/type)

4.2.2. Depending on the scope of the examination, recording of additional information as described below may be necessary.
- Manufacturing toolmarks observed
- Subclass characteristics
- Feed toolmarks observed
- Reloading toolmarks observed
- Trace evidence examination
- Comparison documented
- Support for conclusion
- Evidence alterations
- Photograph/photomicrograph
- Cannelures
- Case finish type
- Primer finish type
- Diagram

4.3. Fired bullet examinations

4.3.1. The following minimum information will be included in case note documentation.
- Packaging
- Exhibit number
- Design/composition
- Diameter
- Caliber
- Weight
• Examination driven changes/modifications to evidence
• Rifling
• Land/groove measurements (where no gun is identified)
• Assessment of the presence or absence of subclass characteristics
• Suitability for comparison
• Trace evidence
• Examiner ID (location)
• GRC search results in cases where no gun is identified

4.3.2. Depending on the scope of the examination, recording of additional information as described below may be necessary.
• Make
• Manufacturers toolmarks
• Comparison documented
• Photographs/photomicrographs
• Cannelures

4.4. Other projectiles

4.4.1. The following minimum information will be included in case note documentation.
• Packaging
• Exhibit number
• Design/composition
• Diameter
• Caliber/gauge/shot size
• Number/amount
• Suitability for comparison
• Subclass characteristics assessment
• Trace evidence
• Examiner ID (location)

4.4.2. Depending on the scope of the examination, recording of additional information as described below may be necessary.
• Make
• Manufacturers toolmarks
• Weight
• Comparison documented
• Support for conclusion
• Rifling
• Photographs/photomicrographs
4.5. Fired cartridge case/shotshell examinations

4.5.1. The following minimum information will be included in case note documentation.
- Packaging
- Basic description
- Exhibit number
- Headstamp
- Caliber/gauge
- Firing pin impression shape/characteristics
- Breech face impression shape/characteristics
- Ejector toolmark
- Extractor toolmark
- Trace evidence
- Suitability for comparison
- Subclass characteristics assessment
- Examiner ID marks (location)

4.5.2. Depending on the scope of the examination, recording of additional information as described below may be necessary.
- Manufacturers toolmarks
- Comparison documented
- Support for conclusion
- Photograph/photomicrograph
- Cannelures
- Case finish type
- Anvil marks
- Ejection port marks
- Chamber marks
- Primer finish type
- Chamber toolmarks shape/characteristics

4.6. Tool/toolmark examinations

4.6.1. The following minimum information will be included in case note documentation.
- Packaging
- Exhibit number
• Examiner ID (location)
• Tools
• Tool type
• Manufacturer/brand name
• General description
• Tool action
• Tool working surface detail
• Method of manufacture
• Class characteristics
• Subclass characteristics assessment
• Suitability for comparison
• Trace evidence
• Damage
• Sketch and/or photos

4.6.2. Toolmark
• Location of toolmark
• Type of toolmark
• Class characteristics
• Subclass characteristic assessment
• Trace evidence
• Suitability for comparison

4.6.3. Depending on the scope of the examination, recording of additional information as
described below may be necessary.
• Comparison documented
• Direction
• Sketch and/or photos
• Support for conclusion
• Photograph/photomicrograph

4.7. Restoration of obliterated markings

4.7.1. The following minimum information will be in the case note documentation.
• Packaging
• Exhibit number
• Make
• Model
• Caliber
• Location of obliterated markings
• Method of obliteration e.g.– grinding, scraping, drilled etc., and toolmark suitability for comparison
• Presence of any characters or partial characters as received prior to restoration
• Photograph/sketch of object and characters or partial characters as received.
• Indication of whether the area of obliteration is magnetic/non-magnetic.
• Trace evidence
• Surface preparation methods
• List methods used for restoration, and order of application.
• Document final restoration results/conclusions by text and photographic depiction, if possible.
• Examiner ID (location)

4.7.2. Depending on the scope of the examination, recording of additional information as described below may be necessary.
• Casts made of any toolmarks present e.g. drilled serial number
• Photos of results

4.8. GSR pattern analysis for distance determinations

4.8.1. The following minimum information will be in the case note documentation.
• Packaging
• Exhibit number
• Description of item(s)
• Location of bullet holes
• Presence of soot and/or smoke
• Size (diameter) and relative density of the GSR pattern (including burnt and/or un-burnt gunpowder)
• Morphology of suspect GSR particles – ball, flattened ball, etc.
• Types of GSR particles i.e. - soot, partially burned GSR, copper residues, etc.
• Take color photographs, with a scale, of significant analytical observations to include: reaction of controls and results of analysis
• Examiner ID (location)

4.9. Shotgun patterning

4.9.1. The following minimum information will be in the case note documentation.
• Location of shot pattern to include margins
• Measurement and description of shot pattern
• Type of chemical test(s) performed
 o Positive control test results for each chemical test performed
4.10. Test firing

4.10.1. The following minimum information will be in the case note documentation.

- Types of test material (and justification) used for distance testing (twill jean etc.)
- Distances of test shots (for distance determination comparison cases)
- Retain and label of control test materials
- Conclusions/results
- Support for conclusions
- If possible, test shot materials used for visual/physical comparisons to the submitted evidence shall be retained.
1. Scope

1.1. This policy and procedure guideline sets a minimum standard for photo documentation in firearm and tool mark comparative examinations. This policy is applicable to all ATF Firearm and Toolmark Examiners and relates to documentation of comparative examinations of all types of tool marks.

2. References

 AFTE Glossary, Current Edition

 AFTE Journal

 ATF-LS Quality Manual

 ATF Reference libraries

 SWGGUN Elimination Factors Related to FA/TM Examinations

3. Background

3.1. Based on the AFTE Theory of Identification, a comparison of two tool marks will result in one of four basic types of conclusions: the tool marks were produced by the same tool, the tool marks were produced by different tools, inconclusive and unsuitable for examination. In order to reach such a conclusion, an examiner has to evaluate the similarity or dissimilarity of various class and individual characteristics, and the potential for subclass characteristics.

3.2. The adopted AFTE Standardization of Comparison Documentation requires that, At a minimum, the documentation must include interpretable depictions or descriptions of the agreement or disagreement of individual and/or class characteristics to the extent that another qualified firearm and tool mark examiner, without the benefit of the evidence itself, can review the case record, understand what was compared, and evaluate why the examiner arrived at the reported conclusion.

3.3. It must be understood that the documentation is not for the purpose of the individual doing the review to independently arrive at his or her own conclusion with regard to the evidence. It is to allow an individual reviewing the case record to determine if there is sufficient documentation of observations that supports the conclusion that was reached.

3.4. Furthermore, the language of the standard is such that the observations are recorded in a manner that is interpretable. This means that the individual doing the review should be
able to understand as precisely as possible what was observed. Simply, nebulous language that can be construed to mean different things to properly trained examiners is to be avoided unless supplemented by photo documentation.

4. Clarification on the role of photomicrography in comparison documentation requirements

4.1. Class characteristics

4.1.1. Class characteristics are easily measured or classified, and the measurements or classifications recorded. Measurements are discreet and can be communicated in a manner that leaves little to no room for incorrect interpretation by another examiner reviewing the work. Likewise, classifications of class characteristics are done according to a classification scheme such that another properly trained examiner would know precisely what the original examiner observed. Therefore, the recording of such measurements or classifications according to standardized protocols without supplemental photomicrography is sufficient for an individual to review the case record for the purpose of determining whether the conclusions are supported.

4.2. Subclass characteristics

4.2.1. Subclass characteristics provide for a level of positive association of two items that is more restrictive than class characteristics but less than individual characteristics. Subclass characteristics have been defined as incidental to manufacture potentially arising from a source that can change over time. Due to their similarity to and potential confusion with individual characteristics it is essential that the evidence be evaluated for the potential of subclass characteristics.

4.2.2. If subclass characteristics are present, they must be documented and any potential influences addressed. If they are not present, then that should be documented as well. Due to their similarity to individual characteristics, if subclass characteristics are present and their correspondence forms the basis for the reported conclusions, then the guidelines for photo documentation of individual characteristics will apply.

4.3. Individual characteristics

4.3.1. Correspondence, or lack thereof, of individual characteristics is not easily communicated. An observation such as significant agreement can mean different things to each examiner. This does not serve as interpretable descriptions of what was observed because the individual performing the review will likely have his or
her own concept of the phrase based upon their training, experience and knowledge.

5. Therefore, the documentation of the comparison will be supplemented by photomicrography of a representative area that was observed. For example, the analyst could describe a particular pattern of correspondence as good correspondence and refer to a photograph of the actual comparison as an example of what he or she means by good correspondence. Then the individual performing the review has an interpretable description or depiction. If a series of exhibits is compared and source identified, a representative photograph of the observed correspondence is to be included. Not every comparison of a series need by documented by photographs.

6. There may be instances in which no correspondence was observed. In these cases, the wording itself provides an interpretable description of what was observed.

7. There may be instances in which some correspondence was observed, but insufficient for a conclusion that the two marks were produced by the same tool. Photomicrography will serve as a helpful interpretable depiction, in that the examiner can take a photomicrograph of the best area and indicate in the notes that this is an example of one of the better areas of correspondence, yet, insufficient for a source identification.

8. If it is not possible to photo document a representative sample, then the best attempt will be made and supplemented by a narrative that describes the issues preventing adequate photo documentation.
1. Scope

1.1. This policy and procedure guideline establishes a standard theory for the identification of toolmarks and the range of conclusions that are applicable to the examination of toolmarks. This protocol is applicable to all ATF firearms examiners, and relates to all types of firearm and toolmark examinations.

2. References

AFTE Glossary, Current Edition
AFTE Journal
ATF-LS Quality Manual
ATF Reference libraries

Department of Justice Uniform Language for Testimony and Reports for the Forensic Firearms/Toolmarks Discipline – Pattern Match Examination

SWGGUN Elimination Factors Related to FA/TM Examinations

3. Range of conclusions possible when comparing toolmarks

3.1. The examiner is encouraged to report the objective observations that support the findings of toolmark examinations. The examiner should be conservative when reporting the significance of these observations.

3.2. The examiner may offer any of the following conclusions.
- Source identification (i.e., identified)
- Source exclusion (i.e., excluded)
- Inconclusive
- Unsuitable

4. Glossary of relevant terms

4.1.1. Class characteristics

Measurable features of a specimen, which indicate a restricted group source. They result from design factors and are determined prior to manufacture.

4.1.2. Individual characteristics
Marks produced by the random imperfections or irregularities of tool surfaces. These random imperfections or irregularities are produced incidental to manufacture and/or caused by use, corrosion, or damage. They are unique to that tool to the practical exclusion of all other tools.

4.1.3. Inconclusive

Inconclusive is an examiner’s conclusion that all observed class characteristics are in agreement but there is insufficient quality and/or quantity of corresponding individual characteristics such that the examiner is unable to identify or exclude the two toolmarks as having originated from the same source. The basis for an inconclusive conclusion is an examiner’s decision that there is an insufficient quality and/or quantity of individual characteristics to identify or exclude. Reasons for an inconclusive conclusion include the presence of microscopic similarity that is insufficient to form the conclusion of source identification; a lack of any observed microscopic similarity; or microscopic dissimilarity that is insufficient to form the conclusion of source exclusion.

4.1.4. Pattern matching

The act of visually comparing the surface contours of two or more striated or impressed tool marks for corresponding and/or differentiating features.

4.1.5. Subclass characteristics

Features that may be produced during manufacture that are consistent among items fabricated by the same tool in the same approximate state of wear. These features are not determined prior to manufacture and are more restrictive than class characteristics.

4.1.6. Toolmark, impressed

Contour variations on the surface of an object caused by a combination of force and motion where the motion of the tool is approximately perpendicular to the plane being marked. The class characteristics (shape) can indicate the type of tool used to produce the mark. These marks may contain class, subclass, and/or individual characteristics of the tool producing the marks. Also known as compression marks.

4.1.7. Toolmark, striated
Contour variations, generally microscopic, on the surface of an object caused by a combination of force and motion where the motion of the tool is approximately parallel to the plane being marked. Friction marks, abrasion marks, and scratch marks are terms commonly used when referring to striated marks. These marks may contain class, subclass, and/or individual characteristics of the tool producing the marks.
1. Scope

1.1. A procedure for collecting and preserving trace evidence on firearm and toolmark related items submitted for examination is necessary to ensure the integrity of said evidence. The manner of collection is varied and specific to the types of trace evidence being collected. These guidelines provide broad guidelines for these procedures. These standards are applicable to all ATF Forensic Laboratories of the Laboratory Services Division. Each examiner should possess general knowledge in the recognition, collection and preservation of trace evidence. An examiner proficient in the recognition, collection and preservation of trace evidence should perform these functions.

2. References

 AFTE Glossary, Current Edition
 AFTE Journal
 ATF-LS Quality Manual
 ATF Reference libraries

3. Safety Precautions

3.1. See *ATF-LS Quality Manual*.

4. Apparatus/Reagents

4.1. Various tools for the collection and preservation, packaging of trace evidence, suitable for the evidence collected, will be required.

5. Procedures

5.1. A person knowledgeable in the recognition, collection and preservation of trace evidence may remove and preserve said trace evidence.

5.2. In circumstances where a knowledgeable trace person is not available, and/or the trace material is not securely attached or is in danger of being lost, preserve the item of evidence as is until a knowledgeable trace person is available.

6. Quality Control

6.1. Improper handling or packaging easily compromises trace evidence; therefore, care must be taken in the handling, preservation and recording of trace evidence.
1. Scope

1.1. A current and complete ammunition reference collection is an important source of information for firearms examiners in routine examinations, particularly in cases where the identification of potential ammunition manufacturer(s) is important in the case investigation, nexus determination and the information of search warrants. Additionally, the determination of source may play a role in proper test firing. This policy is applicable to all ATF Laboratory Services Forensic Laboratories.

2. References

AFTE Journals

ATF Laboratory Services Standard Ammunition File (SAF)

ATF-LS-Quality Manual

ATF Reference libraries

3. Safety precautions

4. Apparatus/reagents

4.1. Inertia bullet puller and packaging materials for disassembled ammunition components.

5. Procedures

5.1. Reference collection samples shall be fully documented, uniquely identified, and properly controlled.

5.2. The items in the Standard Ammunition File are ideally sorted by caliber. A numbering system assigning a unique identifier to each sample will be used to assist in the cataloging of the collection. The cataloging can take the form of an electronic or paper system.

5.3. Each item in the collection should consist of at least the following: one intact cartridge, and one disassembled cartridge.
5.4. At a minimum, the information displayed on the ammunition box for a given reference sample will be fully documented and cataloged for each collection entry, which may include the following.

- Manufacturer of cartridge
- Lot number
- Caliber and weight of the bullet
- Bullet design and/or composition
- Number and size of shot; composition

5.5. Ammunition components may be traceable by the information on the ammunition box and/or the headstamp via the manufacturer.

5.6. Each of the reference collection containers shall be marked with at least the reference collection file number.

5.7. Only ammunition from reliable sources will be added to this collection to protect the integrity of the reference materials in the Standard Ammunition File. For instance, seized loose ammunition from numerous sources is not a reliable source.

5.8. New or updated reference samples obtained by one laboratory should be sent to the ATF Forensic Science Laboratory-Washington in order to maintain the most current and up-to-date Standard Ammunition File. The reference items should be shipped along with the appropriate cataloging information and/or documentation using secure and accepted shipping and packaging methods. The reference items will be accessible to all three ATF Forensic Science Laboratories.

6. Quality control

6.1. Any additional items that are added to the reference collection shall be properly filed and the cataloging system updated by members of the Firearms Section as necessary. The Standard Ammunition File is stored in a secure, restricted access location for use by the Firearms Section to maintain proper control over the reference materials. Safe handling practices and proper caution in accordance with the Firearms Safety Guidelines should be exercised where applicable.
1. Scope

1.1. Regular performance checks of certain measuring devices will be performed as part of the quality program. The regularity and specific procedures of these performance checks and maintenance will be determined by each laboratory where the equipment is in place, in accordance with manufacturer recommendations, and good laboratory practice. Measurement traceability is a requirement for ISO/IEC 17025 accreditation, so an external calibration laboratory that can supply an ISO/IEC 17025 compliant certificate is preferred, but not required, for all performance certifications of reference materials.

2. References

Instrument/equipment specific manufacturer manuals

Laboratory traceable standards (e.g. - weights and gauge blocks)

3. Procedures

3.1. Laboratory equipment utilized for casework by the Firearms Section in each laboratory will be subjected to routine maintenance, performance checks, and/or calibration, as outlined below. Each laboratory shall maintain appropriate documentation (e.g. logbooks) of all maintenance, checks, and/or calibrations. Work instructions for conducting performance checks or verifications shall be maintained at each laboratory, as the available equipment and standards vary between each site. Where applicable, work instructions and/or logbooks will include information on acceptable tolerances.

3.2. Microscopes

3.2.1. All microscopes will be subjected to routine maintenance and performance checks at least once annually.

3.3. Calipers, micrometers, and other measuring devices having moving parts

3.3.1. Calipers, micrometers, and other measuring devices having moving parts will be performance checked at least once annually.

3.4. Measuring devices having no moving parts

3.4.1. Measuring devices having no moving parts will be checked/verified prior to being put into service and typically do not require performance verification unless damage is observed. Any exceptions will be noted in the work instructions.
3.5. Balances and/or scales

3.5.1. Balances and/or scales will be subjected to routine maintenance and performance checks at least once annually.

4. Quality Control

4.1. Logbooks will be reviewed during the annual internal quality reviews.
The gauge block set used to conduct in-house performance checks of measuring devices will have their performance verified by an external calibration laboratory at regular intervals not to exceed ten (10) years. Proper handling of these standards should be followed when conducting performance checks.

- **Comparison and Stereo Microscope Calibration**
 - Currently, all maintenance and calibrations are performed by an approved vendor.

- **Comparison Microscope Magnification Performance Check**
 - A pair of Bright-Line Hymacytometer slides by Reichert-Jung (calibration standard K-2739) will be used. To check for magnification, place the K2739 onto both stages. Focus each side of the microscope using 6X magnification. Position the dividing prism such that it is in the center of the field. Align each side such that the lines on the scales are horizontal and the line at the top of the field of view is perfectly aligned on each side. The lines on the scale shall be aligned to one another such that the line on the bottom of the field is not misaligned by more than one line with either an upward or downward direction. Repeat the same procedure for all magnifications with the same one line tolerance. Document results as needed in logbook.

- **Comparison Microscope Caliper Performance Checks**
 - A stage micrometer slide (calibration standard KR-814 from Trace) will be used for performance checks. Placing the micrometer on the left stage, adjust the microscope’s magnification to 6X. Focus the microscope on the 1” scale located on the slide. Using the measuring eyepiece, align the horizontal reticle with a scale division on the slide. Turn on the Sylvac caliper and zero it. Move the left stage until the eyepiece reticle is now on the next scale division. Observe the measurement noted on the caliper to the actual measurement listed on the scale. The tolerance can be ± .003”. Repeat this procedure for all magnifications. Document results as needed in logbook.
 - **NOTE:** Since the scale on the micrometer slide will not change unless damaged or broken, external re-calibration of the micrometer is not needed under normal usage. Replace the stage micrometer if damage should occur that affects the division markings.
• **Calipers**

 o Use the Brown and Sharp Gauge Block Set and choose at least three different blocks. (Pick blocks that are at least 0.010” apart)
 o Insert the center of the block into the caliper and measure.
 o Observe the measurement noted on the caliper to the actual measurement listed on the block. The tolerance can be ± 0.003”. If the caliper is within the tolerance on all measurements, the calibration has been verified. If the caliper does not measure within the tolerance, the caliper should be re-set and repeat steps one through three.
 o Record the results and date in the logbook.

• **Micrometer**

 o Use the Brown and Sharp Gauge Block Set and choose at least three different blocks. (Pick blocks that are at least 0.010” apart)
 o Insert the center of the block into the micrometer and measure.
 o Observe the measurement noted on the micrometer to the actual measurement listed on the block. The tolerance can be ± 0.003”.
 o If the micrometer is within the tolerance on all measurements, the check has been verified. If the micrometer does not measure within the tolerance, the micrometer should be re-set and repeat steps one through three.
 o Record the results and date in the logbook.

• **Weight Scales**

 o Scales will have performance checks performed annually. Routine maintenance will be performed annually or as needed.
 o Use the Fisher Scientific Company weights.
 o Press the calibration button on the scale and follow the directions.
 o The weight scales are considered to be within tolerance when the calibration is ± 0.1 gram.
 o Record the results and date in the logbook.

• **Balance**

 o Balances will have performance checks performed annually. Routine maintenance will be performed annually or as needed.
 o Release beam or arm.
 o Using the slide weights or dial, set a weight.
 o Place a weight equal to the set weight in the pan or hook.
 o Check for zero.
Bureau of Alcohol, Tobacco, Firearms and Explosives
Laboratory Services
Policies and Procedures Guidelines
FT14-W-A Maintenance and Calibration of Microscopes and other Measuring Devices
(FSL-A Work Instructions)

- Repeat the above steps with three different weights.
- Reset the balance if necessary. The tolerance can be ± 0.1 gram.

- Trigger Pull Spring Gauges
 - Use the 2000 gram weight located in the FSL-A Firearms Section.
 - Measure the weight using the trigger pull spring gauges.
 - Observe the weight noted on the gauge as compared to the actual weight listed on the
 weight.
 - The trigger pull spring gauges are considered to be within tolerance when calibration is ±
 0.125 pounds. Re-adjust if necessary.
 - Record the results and date in the logbook.

- NRA Trigger Pull Weights
 - Use the NIST calibrated TSC balance located in the Explosives Section.
 - Place the weights on the scale.
 - Observe the weight noted on the scale as compared to the actual weight listed on the
 weights.
 - The trigger pull weights are considered to be within tolerance when calibration is ± 1.0
 ounce.
 - Record the results and date in the logbook.

- 2000 Gram Weight
 - Use the NIST calibrated TSC scale located in the Explosives Section.
 - Place the weight on the scale.
 - Observe the weight noted on the scale as compared to the actual weight listed on the
 weight.
 - The 2000 gram weight is considered to be within tolerance when calibration is ± 1.0
 gram.
 - Record the results and date in the logbook.
Fisher Weights

- Use the NIST calibrated Denver Instrument balance (Model APX-200) located in the Explosives Section.
- Place the weight on the scale.
- Observe the weight noted on the scale as compared to the actual weight listed on the weights.
- The weights are considered to be within tolerance when calibration is ± 0.1 gram.
- Record the results and date in the logbook.
The certified standards used to conduct in-house performance checks of measuring devices (gauge block sets, weights) will have their performance verified by an external calibration laboratory at regular intervals not to exceed five (5) years. Proper handling of these standards should be followed when conducting performance checks.

Microscopes

- **Comparison and Stereo Microscope Calibration**

 o Currently all maintenance and calibration verifications are provided by an approved vendor and shall be recorded in the logbook.

- **Comparison Microscope Magnification Performance Check**

 o A pair of Bright-Line Counting Chamber Hymacytometer slides by Reichert (#11581080) will be used. To check for magnification, place one slide on each stage of the microscope. Initially focus each side of the microscope using 20X magnification. Position the dividing prism such that it is in the center of the field. Align each side such that the lines on the scales are horizontal and the line at the top of the field of view is perfectly aligned on each side. The lines on the scale shall be aligned to one another such that the line on the bottom of the field is not misaligned by more than one line with either an upward or downward direction. Repeat the same procedure for all magnifications with the same one line tolerance. Document results and date in the logbook.

Measuring Devices (with moving parts)

- **Caliper and Micrometer Performance Check**

 o Use the Mitutoyo Gauge Block Set and choose at least three different blocks. (Pick blocks that are at least 0.010” apart)

 o Insert the center of the block into the caliper/micrometer and measure.

 o Observe the measurement noted on the caliper/micrometer to the actual measurement listed on the block. The tolerance can be ± 0.003”.

 o If the caliper/micrometer is within the tolerance on all measurements, the performance has been checked/verified. If the caliper does not measure within the tolerance, the caliper/micrometer should be re-set and the process repeated.

 o Record the results and date in the logbook.
Leica Application Suite (LAS) Software Measuring Tool

- Calibration of the LAS Measuring Tool shall be performed by a Leica certified technician, field service engineer, or other qualified representative using traceable standards at regular intervals not to exceed five (5) years. Should a computer using the LAS Software be replaced, the LAS Measuring Tool must not be put into service until calibrated by a Leica representative.
- Performance checks of the LAS Software Measuring Tool will be conducted using standards such as the Mitutoyo Gauge Block Set. At each magnification, the standard should be measured using the LAS Measuring Tool. The observed measurement should be within a tolerance of ±0.003". If the LAS Measuring Tool does not measure within tolerance at all magnifications, the LAS Measuring tool shall be taken out of service as a measuring device until calibration can be performed by a Leica representative.
- Record the results and date in the logbook of any calibration and/or performance check.

Trigger Pull Spring Gauge Performance Check

- Use the trigger pull weights located in the FSL-W Firearms Section. Trigger pull weights have been originally verified by an external vendor.
- Measure the trigger pull weight using the trigger pull spring gauge. Use two different weights.
- Compare the weight measured on the trigger pull spring gauge to the actual weight of the trigger pull weight.
- The trigger pull spring gauges are considered to be within tolerance when the measured weight is ±0.25 pounds of the actual weight.
- Record the results and date in the logbook.

Measuring Devices (no moving parts)

- Trigger Pull Weights Validation

 - Trigger pull weights will be verified prior to being put into service for casework and do not require annual performance verification unless damage is observed. The weights will have their performance verified to an appropriate standard at regular intervals not to exceed five (5) years.
 - Currently all maintenance and performance verifications of trigger pull weights are performed by an external vendor and verified to a tolerance of ±1 ounce.
 - All performance verifications will be recorded in the logbook.
Balances and Scales

- Weight Scales Performance Check
 - Use the Troemner Calibration Weight Set.
 - Press the “calibration” button on the scale and follow the directions on the display.
 - The weight scales are considered to be within tolerance when the calibration is ± 0.1 gram.
 - Record the results and date in the logbook.
1. Scope

1.1. This policy is applicable to all Laboratory Services Firearm and Toolmark Examiners.

2. References

ATF-LS-Quality Manual

3. General

3.1. This policy describes the information that must be included in reports that contain expert opinions and/or interpretations of analysis drawn from the examination and evaluation of firearm and/or toolmark evidence.

3.2. All firearm and/or toolmark reports will, at a minimum, contain the following.
 - Method(s) of analysis
 - The basis for all conclusions/opinions

 - The conclusions/opinions should clearly relate to the items tested. Any items not analyzed or examined must be reported as such.
 - When associations are made, the significance of the association shall be clearly communicated and properly qualified in the report.
 - When no definitive conclusion can be reached (e.g. - inconclusive), the reasons shall be clearly communicated in the report.
 - When comparative examinations result in the exclusion of a firearm, tool or other evidence, the report shall clearly communicate the exclusion.
 - Generation of laboratory separated/laboratory generated evidence and its deposition.

3.3. The actual language used in reporting the results of firearm and toolmark examinations may vary from examiner to examiner. Therefore, the examples below are intended for use as report wording samples only; these examples are not all inclusive.

3.4. Serial number

3.4.1. Full restoration

 3.4.1.1. The obliterated area of Exhibit X was polished, and the serial number “12345” was observed.

 3.4.1.2. The obliterated area of Exhibit X was chemically processed and the serial number was concluded to be “12354”.

3.4.1.3. The obliterated area of Exhibit X was magnetically and chemically processed. Based on known structure and style of characters, the serial number is concluded to be “12354”.

3.4.2. Partial restoration

3.4.2.1. The obliterated area of Exhibit X was magnetically and chemically processed, and the serial number “123*4” was observed. The asterisk represents a numeric character determined to be “1” or “4”.

3.4.2.2. The obliterated area of Exhibit X was magnetically and chemically processed, and the serial number concluded to be “B?C-1234”. The question mark represents a character that could not be restored.

3.4.3. Negative restoration

3.4.3.1. The obliterated area of Exhibit X was chemically processed, but the serial number could not be restored.

3.4.4. Secondary numbers

3.4.4.1 A secondary number was located and visually/microscopically examined on the frame of the Exhibit X pistol. This marking was determined/concluded to read: “XXX-XXXX”. This number may or may not agree with the original manufacturer’s serial number located on the right/left side of the frame.

3.4.5. Data matrix codes

3.4.5.1 The obliterated serial number located on the frame of the Exhibit X pistol was visually examined, chemically processed, and restored to read: “3?????”. The question marks represent unrestored characters. The data matrix code was manually decoded and determined to be “XXXXX”. This number may or may not agree with the original manufacturer’s serial number located on the right/left side of the frame.

3.4.5.2 The data matrix code was scanned and determined to be “XXXXX”. This number may or may not agree with the original manufacturer’s serial number located on the right/left side of the frame.
3.5. Comparative examinations

3.5.1. Source identification

3.5.1.1. Exhibit 3 is a fired cartridge case/shotshell, marketed by Winchester. Microscopic comparisons were conducted between Exhibit 3 and the Exhibit 1 test fires. Based on an agreement of class characteristics and sufficient agreement of individual characteristics, Exhibit 3 was identified as having been fired in the Exhibit 1. The probability that the two toolmarks were made by a different source is so small that it is negligible.

3.5.1.2. The two wires (Exhibits 1&2) were cut with a tool that utilizes a pinching action. The wires were microscopically compared to each other. Based on an agreement of class characteristics and sufficient agreement of individual characteristics, Exhibits 1&2 were identified as having been cut by the same tool. The probability that the two toolmarks were made by a different source is so small that it is negligible.

3.5.2. Inconclusive

3.5.2.1. Exhibit 003 is consistent with being a .223 Remington caliber, copper jacketed bullet which was fired from a barrel rifled with six (6) grooves, right twist. Exhibit 003 was microscopically compared to test bullets fired from Exhibit 001. There is agreement of all discernible class characteristics; however, the lack of sufficient individual marks precludes an identification. Therefore, Exhibit 003 could neither be identified nor excluded as having been fired from Exhibit 001.

3.5.2.2. Based on an agreement of class characteristics, but neither an agreement or disagreement of individual characteristics, the cartridge case (Exhibit 16) could neither be identified nor excluded as having been fired in the same firearm as Exhibits 13, 14, and 15.

3.5.3. Source exclusion

3.5.3.1. Exhibits 13 through 16 consist of four (4) 9mm Luger caliber fired cartridge cases, with the headstamps “CBC” and “RG”. Exhibits 13 through 16 were microscopically compared to each other and to test fired cartridge cases from Exhibit 5. Based on an agreement of class characteristics and sufficient agreement of individual characteristics, Exhibits 13 through 16 were fired in the same firearm. Based on a difference in class characteristics, Exhibits 13 through 16 were excluded as having been fired in Exhibit 5.
3.5.3.2. Based on a difference of individual characteristics, Exhibits 5 through 8 were not fired in the same firearm as Exhibits 1 through 4.

3.5.4. Subclass association

3.5.4.1. The submitted pistol (Exhibit 1) was test fired with laboratory supply ammunition in order to obtain test fired cartridge cases and bullets. The pistol functioned normally with no obvious defects. The test fires were retained with the evidence as Exhibit 1.T1-1.T4. The submitted bullet (Exhibit 2) is a 38/357 caliber bullet fired from a barrel having six lands and grooves with a right twist. Exhibit 2 was identified as having been fired from a barrel having the same class and subclass characteristics as those in the Exhibit 1. However, based on an insufficient agreement of individual characteristics, no further association between Exhibit 1 and 2 could be determined.

3.5.5. Unsuitable for examination

3.5.5.1. Exhibits 002-15 were examined, and their respective calibers could not be determined. No marks of comparative value were observed on these exhibits.

3.5.5.2. Exhibit 7 is a caliber 7.62x39mm fired cartridge case that is unsuitable for microscopic comparison.

3.5.5.3. Exhibit 14 is a grey metal fragment with no marks of comparative value.

3.6. GSR pattern analysis for muzzle to target distance determination

3.6.1 In general, briefly describe the examination process and state conclusions.

3.6.1.1. Contact/near contact

3.6.1.1.1. The Exhibit ## shirt was found to have a hole in the right shoulder area. Microscopic examination and chemical processing of this area detected physical characteristics and gunshot residue(s) indicative of a contact shot.

3.6.1.2. Intermediate

3.6.1.2.1. The Exhibit ## shirt was found to have a hole in the right shoulder area. Microscopic examination and chemical processing of this area detected a pattern of gunshot residues indicative of an intermediate range shot.
3.6.1.3. Distant

3.6.1.3.1. The Exhibit ## shirt was found to have a hole in the right shoulder area. Microscopic examination and chemical processing of this area detected gunshot residue(s) that are indicative of the passage of a bullet.

3.6.1.4. No residues

3.6.1.4.1. The Exhibit ## shirt was found to have a hole in the right shoulder area. Microscopic examination and chemical processing of this area detected no gunshot residue.

3.7. Fracture examinations

3.7.1. The copper jacket fragment (Exhibit #) was physically and microscopically compared to the fired bullet jacket (Exhibit #). Based on an agreement of class characteristics and sufficient agreement of individual characteristics, the copper jacket fragment was at one time part of the fired bullet jacket. The probability that the fractured exhibit(s) were not part of the same object is so small that it is negligible.

3.8. Trajectory

3.8.1. In general, briefly describe examination process (mention all methods used including mathematical calculations) and clearly state conclusions/opinions. With conclusions that involve measurements, reporting should include method(s) variables of measurement or approximations.
1. Scope

1.1. This policy establishes a standard approach for evaluating the opinions/conclusions of Firearm and Toolmark Examiners after the examination and comparative analysis of physical evidence has been performed. This procedure establishes the type of analyses, which must be evaluated and addresses conflict resolutions during this procedure.

2. Reference

3. General

3.1. Selected opinions/conclusions reached during the course of the examination must be evaluated by a second qualified examiner (verifier) prior to completion of the technical record. The verification must be conducted to the extent that the verifier could independently defend and testify to the same conclusion(s).

3.2. The following examinations/analyses require verification.

- Comparative microscopy examinations where an opinion of identification or elimination, based on individual characteristics, are reached by an examiner.

- Comparative microscopy examinations where an opinion of inconclusive is reached by an examiner.

- Serial number restorations: partial or full

- Muzzle-to-target distance determinations

3.3. The following examinations/analyses do not require verification.

- Comparative microscopy examinations where an opinion of elimination, based on a disagreement of class characteristics, are reached by an examiner.

- Land and groove measurements and caliber/gauge determination of fired ammunition components will be evaluated during the technical review process.

4. Procedure
4.1. Verification shall take place after the primary examiner has completed an examination/analysis, but prior to technical review and completion of the technical record(s). Depending on case circumstances, verification may occur at various times during the primary examination of the case.

4.2. In order to reduce the possibility of bias, the primary examiner’s opinions/conclusions should be withheld from the verifier until after the completion of the verification examination.

4.3. Verification entails an examination of the physical evidence, except in some instances when photographic images may be used, as listed below.

4.3.1. Serial number restoration

4.3.1.1. Examination of photographic images of the restored or partially restored characters are acceptable for verification if it sufficiently records the observations.

4.3.2. Distance determination

4.3.2.1. Photographic documentation of some aspects of chemical processing (e.g. transitory color change reactions) may be used for verification if it sufficiently records the observations.

5. Records

5.1. Verification shall be documented in the technical record and shall include, at a minimum: the specific exhibits examined, the opinion/conclusion, supporting data, the verifier’s initials, and the date(s) of the verification(s).

6. Conflict resolution

6.1. When the primary examiner and verifier reach conflicting conclusions that cannot be resolved between the parties, the Section Chief shall attempt to resolve a disagreement between the primary examiner and verifier. If needed, they may consult a qualified third party. The Laboratory Chief shall be consulted as appropriate and necessary. Disagreements and resolutions must be documented in the case record.